Summary
In this unit, students learn about the form and function of the human heart through lecture, research and dissection. Following the steps of the Legacy Cycle, students brainstorm, research, design and present viable solutions to various heart conditions as presented through a unit challenge. Additionally, students study how heart valves work and investigate how faulty valves can be replaced with new ones through advancements in engineering and technology. This unit demonstrates to students how and why the heart is such a powerful organ in our bodies.Engineering Connection
When engineers design solutions to problems, they first gather information—background information about the system they are working with, testing and analysis data that they collect from various materials, and information from experts more familiar with the subject. To design medical devices, technologies and procedures, biomedical engineers must understand how the human body functions, as well as how disease and disorders affect the body. In addition to knowledge gained through education and experience, engineers use problem-solving skills every step of the way in designing devices, tools, products, structures and processes that improve our society.
Unit Overview
Challenge Question
Your grandmother, who has been a non-smoker and relatively healthy throughout her life, has recently noticed that she is becoming increasingly short of breath as she does simple things, such as climbing the steps in her house. She has also noticed that her heart rate increases when she does mild exercise, such as walking to the mailbox or going upstairs. What could be causing this? Is it just due to her getting older? Is there reason to be concerned? What can be done to help her?
Educational Standards
Each TeachEngineering lesson or activity is correlated to one or more K-12 science,
technology, engineering or math (STEM) educational standards.
All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN),
a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics;
within type by subtype, then by grade, etc.
Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.
All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).
In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.
See individual lessons and activities for standards alignment.
Subscribe
Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!Unit Schedule
- Day 1: Heart to Heart lesson (Part I: Legacy Cycle)
- Day 2-4: Heart to Heart lesson (Part II: Heart Anatomy and Blood Flow)
- Day 5: What's with All the Pressure? activity
- Day 6: Blood Pressure Basics lesson
- Day 7: The Mighty Heart activity
- Day 8: Model Heart Valves activity
More Curriculum Like This
Students learn about the form and function of the human heart through lecture, research and dissection. They brainstorm ideas that pertain to various heart conditions and organize these ideas into categories that help them research possible solutions.
Students study how heart valves work and investigate how valves that become faulty over time can be replaced with advancements in engineering and technology. Learning about the flow of blood through the heart, students are able to fully understand how and why the heart is such a powerful organ in ou...
Students learn all about the body's essential mighty organ, the heart, as well as the powerful blood vascular system. This includes information on the many different sizes and pervasiveness of capillaries, veins and arteries, and how they affect blood flow through the system. Then students focus on ...
Copyright
© 2013 by Regents of the University of Colorado; original © 2011 Vanderbilt UniversityContributors
Michael Duplessis; Janet Yowell; Carleigh Samson; Victoria LanaghanSupporting Program
VU Bioengineering RET Program, School of Engineering, Vanderbilt UniversityAcknowledgements
The contents of this digital library curriculum were developed under National Science Foundation RET grant nos. 0338092 and 0742871. However, these contents do not necessarily represent the policies of the NSF, and you should not assume endorsement by the federal government.
Last modified: July 20, 2017
User Comments & Tips