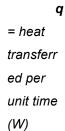
Thermodynamics worksheet

Name: ______Period: _____

Date:

Design Need: The customer needs a thermos designed that is capable of the following:

- holding 200mL of water
- spending less than \$3 for all materials
- least amount of heat loss (smallest decrease in temperature of boiling water after 10 minutes)
- lowest total design cost
- using only the materials listed below
- Can be built & tested by end of class tomorrow (2 days total)


Material Specifications:

Material	Thermal Conductivity (W/m.K)	Cost (\$)
Water (insulation)	0.60	0.25/ mL
Aluminum Foil	250	0.05/ inch
Cotton Balls	0.03	0.15/ each
Paper Cup	0.05	0.55/ each
Sand	0.25	0.01/ gram
Plastic Cup	0.23	0.15/ each
Styrofoam Cup	0.03	0.85/ each
Paint	radiation heat	0.25/ layer
Foam Insulation	0.03	0.05/ inch
Masking Tape	0.08	0.05/ inch

Heat Loss Equation:

Fourier's Law:
$$q = \frac{k \cdot A \cdot (T_H - T_C)}{L}$$

where

A = heat transfer area (m^2)

k = thermal conductivity of the material (W/m.K)

$$T_H$$
 = hot temperature (K)

 T_c = cold temperature (K)

L = material thickness (m)

1. Complete the following statements based on the introduction from your teacher

- a. According to the <u>Heat Loss Equation</u> the value of **q** should be _____ (big or small) if we want less heat loss.
- b. According to the <u>Heat Loss Equation</u> the value of **q** should be _____ (big or small) if we want more heat loss.
- c. According to the <u>Heat Loss Equation</u> the value of k should be _____ (big or small) if we want less heat loss.

d. According to the <u>Heat Loss Equation</u> the value of **k** should be _____ (big or small) if we want more heat loss.

2. Draw a picture of Design #1. Include cost of design and construction details.

Fill in the following table as you choose materials.

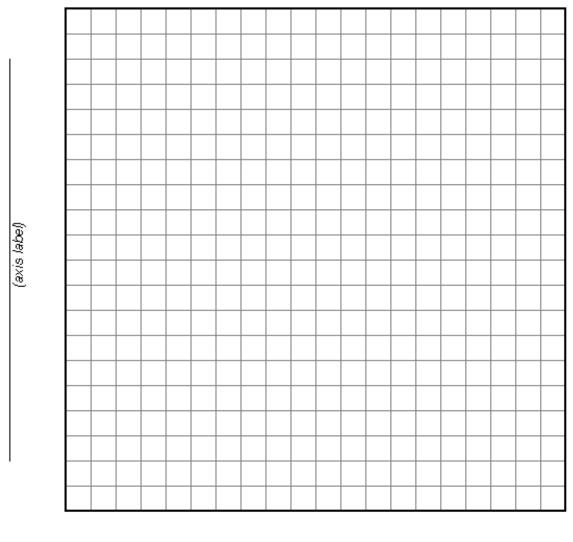
Material	Quantity	Cost (\$)

Complete the following table as you test your design

Time (minutes)	Temperature (°F)
0 - initial temperature reading	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

3. Draw a picture of Design #1. Include cost of design and construction details

Fill in the following table as you choose materials.


Material	Quantity	Cost (\$)

Complete the following table as you test your design

Time (minutes)	Temperature (°F)
0 - initial temperature reading	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

4. Plot the heat loss of each thermos design

- y-axis = temperature
- x-axis = time in minutes

(axis label)

5. What was your best design (#1 or #2)?

DESIGN COST = \$ _____

ΔT (TEMPERATURE LOSS) = _____ °F after 10 minutes

\$/****\T = _____

Be ready to present your design to the class.