End-of-Unit Test

Name: \qquad

1. Find the equation of the line parallel to $7 x-6 y=13$ that passes through the point $(-42,-51)$. Express your answer in Slope-Intercept Form. Show your work!

$$
\begin{gathered}
-6 y=13-7 x \\
y=\frac{7}{6} x-\frac{13}{6}
\end{gathered}
$$

If lines are parallel, then they have the same slope, which is $m=\frac{7}{6}$

$$
\begin{gathered}
y+51=\frac{7}{6}(x+42) \\
y+51=\frac{7}{6} x+49 \\
y=\frac{7}{6} x-2
\end{gathered}
$$

2. Find the equation of the line perpendicular to $3 x+8 y=-15$ that passes through $(-9,14)$. Express your answer in Point-Slope Form. Show your work!

$$
\begin{aligned}
& 8 y=-15-3 x \\
& y=-\frac{3}{8} x-\frac{15}{8}
\end{aligned}
$$

If two lines are perpindicular, their slopes are negative reciporcals of one another.

$$
\begin{gathered}
m=\frac{8}{3} \\
\boldsymbol{y}-\mathbf{1 4}=\frac{\mathbf{8}}{\mathbf{3}}(\boldsymbol{x}+\mathbf{9})
\end{gathered}
$$

3. Find the equation of the line parallel to the line $y=6$ that passes through $(-5,2)$.

The line $y=6$ has a slope of zero.
So, $y=0 x+(y-$ inercept $)$
The $y-$ inertcept $=2$ based on the point $(-5,2)$
Therefore the parallel line to $y=6$ is $\boldsymbol{y}=\mathbf{2}$.
4. Find the equation of the line perpendicular to the line $y=-1$ that passes though $(7,3)$.

The line $y=-1$ has a slope of zero and is horizontal.
Therefore, a line which is perpindicular to a horizontal line is a vertical line, which has an undefined slope.
Because the vertical line passes through $(7,3)$,
The equation for the line is $\boldsymbol{x}=\mathbf{7}$
5. Determine whether each of the relations below is a function and then, using proper set notation, state its domain and range.
(A) $\{(1,7),(2,5),(4,5),(6,6)\} \quad$ (B) $\{(\quad, \quad),(\quad, \quad),(\quad, \quad)\}(C)\{(2,8),(3,10),(2,5),(6,17)\}$

Function
Domain: $\{1,2,4,6\}$
Range: $\{7,5,6\}$

Not a Funciton

Domain: \{\}
Range: \{ \}
Range: $\{8,10,5,17\}$
Not a Function
Domain: $\{2,3,6\}$
6. y varies directly as x. If y is 30 when x is $0.6, \ldots$
(A) find the constant of direct variation, k. Show some work!

$$
\begin{gathered}
y=k x \\
30=k(0.6) \\
k=\frac{30}{0.6} \\
\boldsymbol{k}=\mathbf{5 0}
\end{gathered}
$$

(B) write an equation of direct variation in the form $y=$ $k x$.

$$
y=50 x
$$

(C) find y when x is 20 . Show your work!

$$
\begin{gathered}
y=50(20) \\
\boldsymbol{y}=\mathbf{1 0 0}
\end{gathered}
$$

7. Show your work as you find the slope of the line that passes through the following points:
(A) $(8,-13)$ and $(2,-6)$
(B) $(9,6)$ and $(-5,3)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6+13}{2-8}=-\frac{\mathbf{7}}{\mathbf{4}}$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-6}{-5-9}=-\frac{3}{-14}=\frac{\mathbf{3}}{\mathbf{1 4}}$
8. Determine whether each statement is true or false. Write the entire word, not simply "T" or "F".
\qquad
\qquad When read from left to right, a line with a positive slope will be decreasing.
\qquad T \qquad The slope of any horizontal line is zero.
\qquad
F \qquad It is impossible for the slope of a line to be undefined.
\qquad When read from left to right, the line $y=\frac{1}{3} x$ increases more quickly than the line $y=\frac{1}{2} x$.
9. Match each term with its correct formula.
_ (D) _Slope-Intercept Form
(A) $y=b$
_(C)__ Vertical Line
(B) $y-y_{0}=m\left(x-x_{0}\right)$
_(E)__ Standard Form
(C) $x=a$
_ (B)__ Point-Slope Form
(D) $y=m x+b$
__(A)__ Horizontal Line
(E) $A x+B y=C$
10. Write the equation of the line (in Slope-Intercept Form) that passes through the points $(8,-3)$ and $(16,4)$. Show your work!

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4+3}{16-8}=\frac{7}{8} \\
y-4=\frac{7}{8}(x-16) \\
y-4=\frac{7}{8} x-14 \\
\boldsymbol{y}=\frac{\mathbf{7}}{\mathbf{8}} \boldsymbol{x}-\mathbf{1 0}
\end{gathered}
$$

7. Write the equation of the line (in Point-Slope Form) that passes through the points $(-4,-3)$ and (-8, -9). Show your work!

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-9+3}{-8+4}=-\frac{6}{-4}=\frac{3}{2} \\
\boldsymbol{y}+\mathbf{3}=\frac{\mathbf{3}}{\mathbf{2}}(\boldsymbol{x}+\mathbf{4})
\end{gathered}
$$

8. Find the x and y intercepts of the line $-3 x+5 y=-60$. Show your work! You can express your final answer as either a single number or an ordered pair.

For the equation above, when $x=0, y=-12$ and when $y=0, x=20$.

$$
\begin{aligned}
& 5 y=3 x-60 \\
& y=\frac{3}{5} x-12
\end{aligned}
$$

So, $m=\frac{3}{5}$, and if $x=5$, then $y=-9$ so the point $(5,-9)$ is on the line.

$$
y+9=\frac{3}{5}(x-5
$$

x - intercept: $\quad 20$
y - intercept: - 12
9. Convert the equation $y-8=-3(x+5)$ from Point-Slope Form to Slope-Intercept Form. Show your work!

$$
\begin{gathered}
y-8=-3 x-15 \\
y=-3 x-7
\end{gathered}
$$

10. Using the rectangular coordinate system below, graph each of the linear equations. Write each equation beside its corresponding graph.
$y=-5 x+7$
$2 x-4 y=16$
$y=-5$
$y-5=\frac{1}{6}(x+4) \quad x=8$

