Name: \qquad

Slope-Intercept Form Homework

1. Identify the slope, x-intercept, and y-intercept for each of the following equations. Then graph and label them on the provided coordinate plane.

$\begin{array}{lc} \hline \text { (A) } y=-4 x-1 & \\ & 0=-4 x-1 \\ & 1=-4 x \\ & x=-\frac{1}{4} \\ \text { m: }-4 & \text { x-int: }-\frac{1}{4} \end{array}$	$\begin{aligned} & \text { (B) } \begin{aligned} & y=\frac{3}{5} x-2 \\ & 0=\frac{3}{5} x-2 \\ &\left(\frac{5}{3}\right) * 2=\left(\frac{3}{5} x\right)\left(\frac{5}{3}\right) \\ & x=\frac{10}{3} \\ & \text { m: } \frac{3}{5} \quad \text { x-int: } \frac{10}{3} \quad y \text {-int (b): }-2 \end{aligned} \\ & \end{aligned}$
(C) $y=4 x+5$ $\begin{gathered} 0=4 x+5 \\ -5=4 x \\ x=-\frac{5}{4} \end{gathered}$ $\text { m: } 4 \quad \text { x-int: }-\frac{5}{4} \quad \text { y-int (b): } 5$	(D) $y=0.5 x-4$ $\begin{gathered} 0=0.5 x-4 \\ 4=0.5 x \\ x=8 \end{gathered}$ $\text { m: } 0.5 \quad \text { x-int: } 8 \quad y \text {-int (b): }-4$

2. Write an equation in slope-intercept form for the line that contains the following points.
(A) $(0,6)$ and $(5,0)$
(B) $(3,4)$ and $(-1,-2)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-6}{5-0}=-\frac{6}{5}$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4+2}{3+1}=\frac{6}{4}=\frac{3}{2}$
$y=-\frac{6}{5} x+b$
$y=\frac{3}{2} x+b$
$6=-\frac{6}{5} *(0)+b$
$-2=\left(\frac{3}{2}\right) *(-1)+b$
$b=6$
$y=-\frac{6}{5} x+6$
$b=-\frac{1}{2}$
$y=\frac{3}{2} x-\frac{1}{2}$
(C) $(7,-7)$ and $(-4,-3)$
(D) $(6,6)$ and $(-2,-2)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-7+3}{7+4}=-\frac{4}{11}$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6+2}{6+2}=\frac{8}{8}=1$
$y=-\frac{4}{11} x+b$
$y=1 x+b$
$-3=-\frac{4}{11} *(-4)+b$
$-2=1 *(-2)+b$
$-2=-2+b$
$-3=\frac{16}{11}+b$
$b=0$
$b=-\frac{49}{11}$
$y=-\frac{4}{11} x-\frac{49}{11}$
3. Write an equation in slope-intercept form for the line that fits each description below.
(A) contains the origin and has a slope of -2

$$
y=-2 x
$$

(B) crosses the y-axis at -1 and has a slope of 5

$$
y=5 x-1
$$

(C) contains $(-3,2)$ and $(6,6)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-2}{6+3}=\frac{4}{9}$
$y=\left(\frac{4}{9}\right) x+b$
$2=\left(\frac{4}{9}\right) *(-3)+b$
$b=\frac{10}{3}$
$y=\frac{4}{9} x+\frac{10}{3}$
(D) contains the point $(3,-5)$ and is parallel to the line $y=3 x-4$
$m=3$
$y=3 x+b$
$-5=3 *(3)+b$
$b=-14$
$y=3 x-14$
(E) contains the point $(-1,4)$ and is parallel to the line $2 y=4 x+10$

$$
\begin{aligned}
& y=2 x+5 \\
& m=2 \\
& y=2 x+b \\
& 4=2 *(-1)+b \\
& b=6 \\
& y=2 x+6
\end{aligned}
$$

(F) contains the point $(2,7)$ and is perpendicular to the line $y=3 x-4$

$$
\begin{gathered}
m=-\frac{1}{3} \\
y=-\frac{1}{3} x+b \\
7=-\frac{1}{3} *(2)+b \\
b=\frac{23}{3} \\
y=-\frac{1}{3} x+\frac{23}{3}
\end{gathered}
$$

