Review

1.) Rewrite as an exponent:

$$
\log _{7} 49=2
$$

2.) Rewrite as a logarithm:

$$
2^{5}=32
$$

3.) Evaluate:

$$
\log _{5} 125
$$

Properties of Logarithms

- The properties of logarithms can be derived from the properties of exponents.
- We use these properties to solve equations.

Properties of Logarithms

Suppose m and n are positive numbers, b is a positive number other than 1 , and p is any real number. Then the following properties hold.

Property	Definition	Example
Product	$\log _{b} m n=\log _{b} m+\log _{b} n$	$\log _{3} 9 x=\log _{3} 9+\log _{3} x$
Quotient	$\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$	$\log _{\frac{1}{4}} \frac{4}{5}=\log _{\frac{1}{4}} 4-\log _{\frac{1}{4}} 5$
Power	$\log _{b} m^{p}=p \cdot \log _{b} m$	$\log _{2} 8^{x}=x \cdot \log _{2} 8$
Equality	lf $m=n$. $\log _{b} m=\log _{b} n$, then	$\log _{8}(3 x-4)=\log _{8}(5 x+2)$ $\mathrm{so}, 3 \mathrm{x}-4=5 \mathrm{x}+2$

Example:

Solve each equation.

$$
\text { 1.) } \log _{8}(4 x+6)=\log _{8}(8 x-2)
$$

Example:

Solve each equation.

$$
\text { 2.) } \log _{9} x+\log _{9}(x-2)=\log _{9} 3
$$

Example:

Solve each equation.

$$
\text { 3.) } \log _{p} 64^{\frac{1}{3}}=\frac{1}{2}
$$

Try:

Solve each equation.

$$
\text { 4.) } \log _{4}(2 x+11)=\log _{4}(5 x-4)
$$

Try:

Solve each equation.

$$
\text { 5.) } \log _{11} x+\log _{11}(x+1)=\log _{11} 6
$$

