Manipulate and Create a Balanced Sonoran Desert Ecosystem:

- 1. Go to "My Documents" and open the "Sonoran Desert" folder. Click on the simulation file to open it.
- 2. Notice that the screen displays 5 blue species population slider tools that enable the user to determine how many individuals to use in any particular simulation run. Sliding the pink knob sets the simulation to that particular number.
- 3. Once these species numbers are pre-selected, the "Setup" button activates the simulation screen to show those populations.
- 4. The "normal speed" slider should be **set to no more than a third** of the distance to the right.
- 5. Click on "Start/Stop" to initiate the simulation.
- 6. Graphs are plotted with the data keyed to the 3 boxes in the middle of the screen and track the changes in the population numbers as the species interact with one another. This community is in balance if all 5 species remain extant. If a species population falls to zero, the species' populations are not balanced with one another.
- 7. Follow the directions below in order to develop an understanding of how each species is interdependent on the others to maintain the balance required for coexistence.

Exploring the Simulation's Species' Relationships:

rat) slider to 40 . The other imulation. Study the bottom aximum population density wood trees and squirrels show
wood trees and squirrens snow
sity at 40. What is the maximum his change in tree density affect

3. Now, add 2 hav	vks to the simulation	without changi	ng the other settings.	What is the
maximum	and minimum	_ squirrel popu	lation density? What	happens to
the squirrel populat	tion as the simulation	continues to ru	ın? Explain.	
4. How has the relaaltered? Explain.	ationship between the	e population de	nsities of ironwood p	ods to squirrels been
-				
5. Next, add 5 sag	uaro (cacti) to the sin	mulation and re	emove all of the haw	ks. Is the
saguaro a food reso	ource for these squirre	els?	What is the effect to	the squirrel
population as comp	pared to their density	in question 2?	Explain.	
6. In this step, add now? Explain why	8 doves to the simul.	ation. What is t	the affect to the squire	rel population density

7. What relationship do the squirrels have with the doves? Explain.
8. What relationship do the doves have with the squirrels? Is it the same relationship as asked in question 7? Explain.
9. Add 2 hawks back into the simulation. What is the resulting change to both the squirrel and dove populations?
10. How do the population densities between these three species in question 9 affect one another?
11. Summarize how a balance is maintained through the interaction of these 5 species.
12. Identify 3 weaknesses with this simulation and explain each.