
Name: ___ Date: ______________________ Class: ____________________

Making the Connection Lesson—DFS and BFS Algorithms Instructions 1

Graph Theory:
Depth First Search (DFS) and Breadth First Search (BFS) Algorithms Instructions

DFS and BFS are common methods of graph traversal, which is the process of visiting every

vertex of a graph. Stacks and queues are two additional concepts used in the DFS and BFS

algorithms.

A stack is a type of data storage in which only the last element added to the stack can be

retrieved. It is like a stack of plates where only the top plate can be taken from the stack. The

three stacks operations are:

Push – put an element on the stack

Peek – look at the top element on the stack, but do not remove it

Pop – take the top element off the stack

A queue is a type of data storage in which the elements are accessed in the order they were

added. It is like a cafeteria line where the person at the front of the line is next. The two queues

operations are:

Enqueue – add an element to the end of the queue

Dequeue – remove an element from the start of the queue

Considering a given node as the parent and connected nodes as children, DFS will visit the child

vertices before visiting siblings using this algorithm:

Mark the starting node of the graph as visited and push it onto the stack

While the stack is not empty

 Peek at top node on the stack

 If there is an unvisited child of that node

 Mark the child as visited and push the child node onto the stack

 Else

 Pop the top node off the stack

BFS will visit the sibling vertices before the child vertices using this algorithm:

Mark the starting node of the graph as visited and enqueue it into the queue

While the queue is not empty

 Dequeue the next node from the queue to become the current node

 While there is an unvisited child of the current node

 Mark the child as visited and enqueue the child node into the queue

Examples of the DFS and BFS algorithms are given next.

Making the Connection Lesson—DFS and BFS Algorithms Instructions 2

Example of the Depth First Search (DFS) Algorithm

Mark the starting node of the graph as visited and push it onto the stack

While the stack is not empty

 Peek at top node on the stack

 If there is an unvisited child of that node

 Mark the child as visited and push the child node onto the stack

 Else

 Pop the top node off the stack

Example using the graph to the right.

The stack push, peek and pop accesses the element on the right.

Action Stack Unvisited Nodes Visited Nodes
Start with node 1 1 2, 3, 4, 5, 6 1

Peek at the stack
Node 1 has unvisited
child nodes 2 and 5

1 2, 3, 4, 5, 6 1

Mark node 2 visited 1, 2 3, 4, 5, 6 1, 2

Peek at the stack
Node 2 has unvisited
child nodes 3 and 5

1, 2 3, 4, 5, 6 1, 2

Mark node 3 visited 1, 2, 3 4, 5, 6 1, 2, 3

Peek at the stack
Node 3 has unvisited
child node 4

1, 2, 3 4, 5, 6 1, 2, 3

Mark node 4 visited 1, 2, 3, 4 5, 6 1, 2, 3, 4

Peek at the stack
Node 4 has unvisited
child node 5

1, 2, 3, 4 5, 6 1, 2, 3, 4

Mark node 5 visited 1, 2, 3, 4, 5 6 1, 2, 3, 4, 5

Peek at the stack
Node 5 has no unvisited
children

1, 2, 3, 4, 5 6 1, 2, 3, 4, 5

Pop node 5 off stack 1, 2, 3, 4 6 1, 2, 3, 4, 5

Peek at the stack
Node 4 has unvisited
child node 6

1, 2, 3, 4 6 1, 2, 3, 4, 5

Mark node 6 visited 1, 2, 3, 4, 6 1, 2, 3, 4, 5, 6

There are no more unvisited nodes so the nodes will be popped from the stack and the algorithm

will terminate.

Making the Connection Lesson—DFS and BFS Algorithms Instructions 3

Example of the Breadth First Search (BFS) Algorithm

Mark the starting node of the graph as visited and enqueue it into the queue

While the queue is not empty

 Dequeue the next node from the queue to become the current node

 While there is an unvisited child of the current node

 Mark the child as visited and enqueue the child node into the queue

Example using the graph to the right.

The queue operation enqueue adds to the left and dequeue removes from the right.

Action Current Node Queue Unvisited Nodes Visited Nodes
Start with node 1 1 2, 3, 4, 5, 6 1

Dequeue node 1 1 2, 3, 4, 5, 6 1

Node 1 has unvisited
children nodes 2 and 5

1 2, 3, 4, 5, 6 1

Mark 2 as visited and
enqueue into queue

1 2 3, 4, 5, 6 1, 2

Mark 5 as visited and
enqueue into queue

1 5, 2 3, 4, 6 1, 2, 5

Node 1 has no more
unvisited children, dequeue
a new current node 2

2 5 3, 4, 6 1, 2, 5

Mark 3 as visited and
enqueue into queue

2 3, 5 4, 6 1, 2, 5, 3

Node 2 has no more
unvisited children, dequeue
a new current node 5

5 3 4, 6 1, 2, 5, 3

Mark 4 as visited and
enqueue into queue

5 4, 3 6 1, 2, 5, 3, 4

Node 5 has no more
unvisited children, dequeue
a new current node 3

3 4 6 1, 2, 5, 3, 4

Node 3 has no more
unvisited children, dequeue
a new current node 4

4 6 1, 2, 5, 3, 4

Mark 6 as visited and
enqueue into queue

4 6 1, 2, 5, 3, 4, 6

There are no more unvisited nodes so the nodes will be dequeued from the queue and the

algorithm will terminate.

