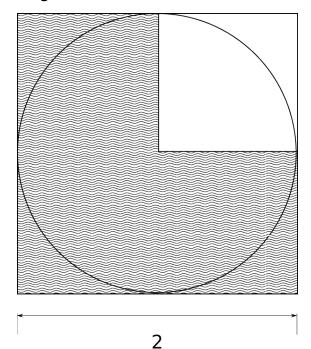

Name:	Date:	

A Chance at Monte Carlo Activity — Monte Carlo Simulation Worksheet

Inscribed Circle



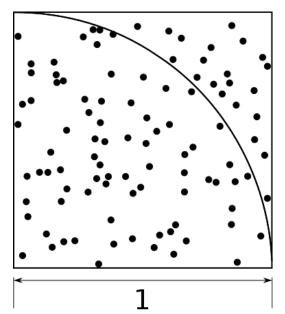
Area of the square:

Area of the circle: _____(hint: find radius first)

Ratio of areas (circle to square):

Single Quadrant

Both the area of the square and the area of the circle are divided by four.


What is the area of the un-shaded square?

What is the area of the quarter circle wedge?

Is the ratio the same as before? (YES or NO)

Estimating the Area

Find the number of points inside the wedge versus the total number of points (100).

Hint: it may help to count the points outside; for example: $N_{in} = 100 - N_{out}$

If
$$\frac{N_{in}}{100} \approx \frac{\pi}{4}$$
, then $\pi \approx \frac{4N_{in}}{100}$

What is your estimate of π ?

Collecting Data

1. Use the NXT program to collect five estimates of pi from 100 simulated points:

- 2. What is the average estimate \bar{x} : _____
- 3. Below are two ways to evaluate the quality of the estimate. Since we already have a "gold standard" for pi, we can compute the **percent error:**

$$100 \times \frac{|3.14159 - \bar{x}|}{3.14159}$$

The **standard error** is a better measure of quality when we do not have a gold standard (when we estimate an unknown quantity). The standard error measures how widely the different estimates differ from the average.

$$SE = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n(n-1)}} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_5 - \bar{x})^2}{n(n-1)}}$$

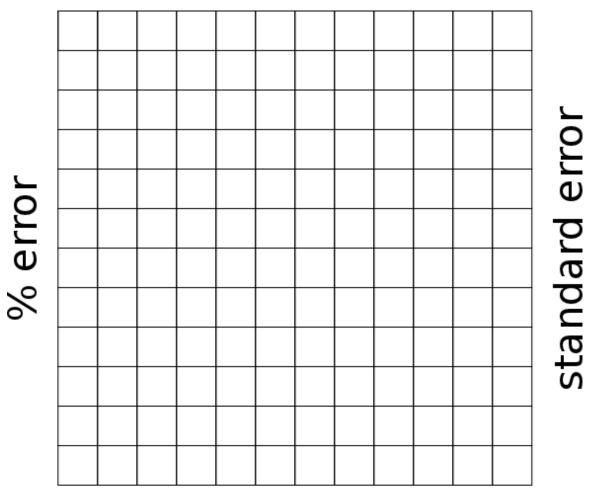
What is the percent error?

What is the standard error?

4. Reset the NXT program to use 500 simulations.

The average estimate is: _____

The percent error is: _____


The standard error is: _____

5. Repeat the experiment for 1000 and 4000 simulations.

1000 points	4000 points
The average estimate is:	The average estimate is:
The percent error is:	The percent error is:
The standard error is:	The standard error is:

Extra Credit

1. Plot the estimation errors versus simulated points.

simulations