Name:	_ Date:	Class:

Deformation: Foam Compression Worksheet

Pre-Activity Define stress and strain.

Stress is:

Strain is:

Hypothesis

What type of object, hard or soft, requires the most compression? Why?

List Materials

Write the Procedure

- 1.
- 2.
- 3.

Name:	_ Date:	
Data Collection		

Equation 1:	Strain = $(L_{change})/L$
-------------	---------------------------

Object (hard or soft)	Number of motor rotation for compression (power)	L (cm)	L _{change} (cm)	Strain	Does the object go back to its original shape?
Play-Doh					
bread					
marshmallow					
foam					

Graphing

Create a graph of the number of rotations (x-axis) vs. the strain (y-axis) for the objects listed in the above table

Name:	Date:	Class:
		0.000

Results & Conclusions

1. Which object had the greatest strain/deformation?

2. Which object had the most rotations?