\qquad

Why Does a Liquid Jet Form Droplets?

The inkjet printer is one of the most widely-used printer types for home and office printing. The fundamental principle in the operation of inkjet printers is the tendency of a continuous stream of liquid to break apart and form droplets, just like water falling from a faucet. In this activity, we are going to explore why this happens.

1. Turn on a faucet so that just a small stream of water emerges. Describe what you see:

Turn off the faucet when you are done.

2. Cylindrical Column: Imagine that the water from the faucet did not break up, but remained in a cylindrical stream all the way down.
Use a radius r of the cylinder is 0.75 cm and the height is 16 cm .
a. What is volume of the water? $V=\pi r^{2} h$ (Show all work.)
b. What is the surface area of the column of water? $A_{C}=2 \pi\left(r^{2}+r h\right)$ (Show all work.)

3. Spheres: When a jet of water breaks up into droplets, their radii are about twice the radius of the original water column. Use a spherical radius R of 1.0 cm .
a. What is the volume of a single spherical droplet? $V_{S}=\frac{4}{3} \pi R^{3}$ (Show all work.)
b. When water breaks into spherical droplets, the volume of the water does not change.

How many spherical droplets will be formed from the total volume found in \# 2a? $n=\frac{V}{V_{S}}$ (Show all work.)
c. What is the total surface area of the spherical water droplets? $A_{S}=n 4 \pi R^{2}$ (Show all work.)

Cubes: Why does the water form spherical droplets instead of cubical droplets? Use a cube droplet with a side length 1.0 cm .
a. What is the volume of a single cubical droplet? $V_{C u}=l^{3}$ (Show all work.)
b. How many cubical droplets would be formed from the total volume found in \# 2a? $n=\frac{V}{V_{C u}}$ (Show all work. Round to the nearest whole number.)
c. What would be the total surface area of the cubical droplets? $A_{C u}=n\left(6 l^{2}\right)$ (Show all work.)
5. Summary: Fill in the table below.

Shape	Total Surface Area (cm ${ }^{2}$)
cylindrical column	
spherical droplets	
cubical droplets	

6. Questions: For all three shapes, the volume used was the same. Looking at the table above, why does a liquid jet form spherical droplets? How is this related to the surface tension activities done in class?
