Name: \qquad Date: \qquad

Load Combinations Worksheet Answers

Show your work as you use the following load combinations to solve the problem:

Load Combinations

1. Ultimate load = dead load + live load + snow load
2. Ultimate load = dead load + live load + wind load (or earthquake load)
3. Ultimate load = dead load + live load + wind load + (snow load $\div 2$)
4. Ultimate load $=$ dead load + live load + snow load + (wind load $\div 2$)
5. Ultimate load = dead load + live load + snow load + earthquake load

Calculate the five ultimate loads resulting from each combination for the following loads:
Dead load $=100,000 \mathrm{lbs}$
Live load $=30,500 \mathrm{lbs}$
Wind load $=5,020 \mathrm{lbs}$
Snow load = 400 lbs
Earthquake load $=5,000 \mathrm{lbs}$

Answer

Load combination 1: $=100,000+30,500+400=130,900 \mathrm{lbs}$
Load combination 2: $=100,000+30,500+5020($ or 5000 $)=135,520 \mathrm{lbs}$ with wind load
OR = 135,500 lbs with earthquake load
Load combination 3: $=100,000+30,500+5020+(400 \div 2)=135,720 \mathrm{lbs}$
Load combination 4: $=100,000+30,500+400+(5020 \div 2)=133,410 \mathrm{lbs}$
Load combination 5: $=100,000+30,500+400+5000=135,900 \mathrm{lbs}$

From the five ultimate loads calculated above, for which ultimate load amount must the structure be designed?

The structure must be designed for $\mathbf{1 3 5 , 9 0 0}$ lbs which is obtained with load combination 5 .

Problem 1: Using the highest load calculated from the first page, calculate the required area of a rectangular shape made of concrete if it is a pier or a column with a compression force acting on it. If $L=10$ inches, what must B be equal to?
The maximum compressive strength of this concrete is $4,000 \mathrm{lbs} / \mathrm{in}^{2}$. Use the following equations to complete the problem. Show all work and calculations.

Highest ultimate load $=($ max. compressive strength $) x($ cross-sectional area $)$
Cross-sectional area $=(\mathrm{B}) \times(\mathrm{L})$

Problem 1 cross-sectional area.

Answer
Highest ultimate load $=\mathbf{1 3 5}, 900 \mathrm{lbs}$

Cross-sectional area $=$ highest ultimate load \div max. compressive strength
Cross-sectional area $=\mathbf{1 3 5 , 9 0 0} \mathrm{lbs} \div 4,000 \mathrm{lbs} / \mathrm{in}^{2}$
Cross-sectional area $=33.975$ in 2

If $L=10$ inches,
$B=$ cross-sectional area $\div L$
$B=33.975$ in $^{2} \div 10$ inches
$B=3.3975$ inches

Problem 2A: Using the highest load calculated from the first page, calculate the required area of the circular shape made of concrete if it is a pier or a column with a compression force acting on it. What is the radius of this circle? The maximum compressive strength of this concrete is $5,000 \mathrm{lbs} / \mathrm{in}^{2}$.

Problem 2B: Using the highest load calculated from the first page, calculate the required cross sectional area of the I-shape made of steel if it is a pier or a column with a tension force acting on it. The maximum tensile strength of this steel is $\mathbf{5 0 , 0 0 0} \mathrm{lbs} / \mathrm{in}^{2}$.

Use the following equations to complete the problem. Show all work and calculations.
Highest ultimate load $=($ max. compressive strength $) \times($ cross-sectional area $)$
Cross-sectional area of circle $=\pi \times$ (radius) $^{2} \quad \pi=3.14$
Highest ultimate load $=($ max. compressive strength $) \mathrm{x}($ cross-sectional area $)$

Problem 2 cross-sectional areas.

Answer
Highest ultimate load = 135,900 lbs

For the circular shape:
Cross-sectional area $=$ highest ultimate load \div max. compressive strength
Cross-sectional area $=\mathbf{1 3 5 , 9 0 0} \mathrm{lbs} \div \mathbf{5 , 0 0 0} \mathrm{lbs} / \mathrm{in}^{2}$
Cross-sectional area $=27.18$ in 2
Radius of circle $=$ square root of (cross-sectional area of circle $\div \pi$)
Radius of circle $=$ square root of $\left(27.18\right.$ in $\left.^{2} \div 3.14\right)$
Radius of circle $=2.942$ inches

For the I-shape:
Cross-sectional area $=$ highest ultimate load \div max. tensile strength
Cross-sectional area $=\mathbf{1 3 5 , 9 0 0} \mathbf{l b s} \div \mathbf{5 0 , 0 0 0} \mathbf{~ l b} / \mathrm{in}^{2}$
Cross-sectional area $=2.718$ in 2

Problem 3A: Using the highest load calculated from the first page, calculate the required Z_{x} of the rectangular shape made of steel if it is a beam or a girder with a length equal to 20 feet (or 240 inches). F_{y} of steel is equal to $50,000 \mathrm{lbs} / \mathrm{in}^{2}$.
Problem 3B: What if the same beam was made of concrete with F_{y} equal to $4,000 \mathrm{lbs} / \mathrm{in}^{2}$.
Use the following equations to complete the problem. Show all work and calculations.
$Z_{x}=($ force x length $) \div\left(\mathrm{F}_{\mathrm{y}} \mathrm{x} 4\right)$
B

Problem 3 cross-sectional area.

Answer
Highest Ultimate Load $=\mathbf{1 3 5 , 9 0 0} \mathbf{l b s}$

If made of steel:
$Z_{x}=($ force x length $) \div\left(F_{y} \times 4\right)$
$Z_{x}=(135,900 \mathrm{lbs} \times 240$ inches $) \div\left(4 \times 50,000 \mathrm{lbs} / \mathrm{in}^{2}\right)$
$Z_{x}=163.08$ in 3

If made of concrete:
$Z_{x}=(135,900 \mathrm{lbs} \times 240$ inches $) \div\left(4 \times 4,000 \mathrm{lbs} / \mathrm{in}^{2}\right)$
$\mathrm{Z}_{\mathrm{x}}=2038.5 \mathrm{in}^{3}$

