As the water loses elevation from the high end of the pipe to the low end, it gains velocity.

Ground ($h=0$)

$$
\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}+P_{1}=\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}+P_{2}
$$

The water at the top of the reservoir starts at rest, so v_{l} is zero, and the first term drops out.

Since the final height $\left(h_{2}\right)$ is also zero, this term drops out, too.

Lastly, $\mathrm{P}_{1}=\mathrm{P}_{2}$, which is atmospheric pressure, so these terms drop out as well.

Plugging in the remaining the known parameters:

$$
\rho_{\text {water }} g(250 \mathrm{~m})=1 / 2 \rho_{\text {water }} v_{2}^{2}
$$

Now the $\rho_{\text {water }}$ terms can be cancelled out.
Using $g=9.8 \mathbf{m} / \mathbf{s}^{2}$ and solving for v_{2}, we have

$$
\begin{gathered}
v_{2}=\operatorname{sqrt}\left(2 * 9.8 \mathrm{~m} / \mathrm{s}^{2} * 250 \mathrm{~m}\right) \\
v_{2}=70 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

