As the water loses elevation from the high end of the pipe to the low end, it gains velocity.



Ground (h = 0)



$$\frac{1}{2}\rho v_1^2 + \rho g h_1 + P_1 = \frac{1}{2}\rho v_2^2 + \rho g h_2 + P_2$$

The water at the top of the reservoir starts at rest, so  $v_1$  is zero, and the first term drops out.

Since the final height  $(h_2)$  is also zero, this term drops out, too.

Lastly,  $P_1 = P_2$ , which is atmospheric pressure, so these terms drop out as well.

Plugging in the remaining the known parameters:  $\rho_{water} g (250 \text{ m}) = \frac{1}{2} \rho_{water} v_2^2$ 

Now the  $\rho_{water}$  terms can be cancelled out.

Using  $g = 9.8 \text{ m/s}^2$  and solving for  $v_2$ , we have

$$v_2 = \text{sqrt} (2*9.8 \text{ m/s}^2 * 250 \text{ m})$$
  
 $v_2 = 70 \text{ m/s}$