\qquad

Bernoulli Equation Practice Worksheet Answers

Problem 1

Water is flowing in a fire hose with a velocity of $1.0 \mathrm{~m} / \mathrm{s}$ and a pressure of 200000 Pa . At the nozzle the pressure decreases to atmospheric pressure (101300 Pa), there is no change in height. Use the Bernoulli equation to calculate the velocity of the water exiting the nozzle. (Hint: The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravity g is
 $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Pay attention to units!)]

Answer:

$$
\frac{1}{2} \rho v_{1}^{2}+\rho g h_{1}+P_{1}=\frac{1}{2} \rho v_{2}^{2}+\rho g h_{2}+P_{2}
$$

Since the height does not change $\left(h_{I}=h_{2}\right)$, the height term can be subtracted from both sides.

$$
\frac{1}{2} \rho v_{1}^{2}+P_{1}=\frac{1}{2} \rho v_{2}^{2}+P_{2}
$$

Algebraically rearrange the equation to solve for v_{2}, and insert the numbers

$$
\sqrt{\frac{2}{\rho}\left(\frac{1}{2} \rho v_{1}^{2}+P_{1}-P_{2}\right)}=v_{2}=14 \mathrm{~m} / \mathrm{s}
$$

Problem 2
Through a refinery, fuel ethanol is flowing in a pipe at a velocity of $1 \mathrm{~m} / \mathrm{s}$ and a pressure of 101300 Pa . The refinery needs the ethanol to be at a pressure of 2 atm $(202600 \mathrm{~Pa})$ on a lower level. How far must the pipe drop in height in order to achieve this pressure? Assume the velocity does not change. (Hint: Use the Bernoulli equation. The density of ethanol is $789 \mathrm{~kg} / \mathrm{m} 3$ and gravity g is $9.8 \mathrm{~m} / \mathrm{s} 2$. Pay attention to units!)
Answer:

Since the velocity does not change ($v_{l}=v_{2}$), the velocity term can be subtracted from both sides

$$
\rho g h_{1}+P_{1}=\rho g h_{2}+P_{2}
$$

Rearrange algebraically to solve for change in height

$$
\frac{P_{1}-P_{2}}{\rho g}=h_{2}-h_{1}=\Delta h=-13.1 \text { meters }
$$

13.1 meters lower.

