\qquad
\qquad
\qquad

Buoyancy Worksheet Answers

1) A medical ship has a mass of $100,000 \mathrm{~kg}$. What volume of fresh water $(\rho=1025 \mathrm{~kg} / \mathrm{m} 3)$ will the ship displace?
$100,000[\mathrm{~kg}] / 1,025\left[\mathrm{~kg} / \mathrm{m}^{3}\right]=\mathbf{9 7 . 5 6} \mathbf{m}^{\mathbf{3}}$
2) How much mass can a $1,000,000 \mathrm{~L}$ balloon lift if the inside temperature of the balloon is 80 ${ }^{\circ} \mathrm{C}$ and the outside air temperature is $20^{\circ} \mathrm{C}$?

First, move the terms containing V to the same side by subtracting $\mathrm{V} \rho$ Inside Fluid from both sides:
$\mathrm{M}<\mathrm{V} \rho_{\text {Outside Fluid }}-\mathrm{V} \rho_{\text {Inside Fluid }}$
Next, plug in the numbers:

M < (1,000,000 L) (1.204 g/L-1.000 g/L)
M < 204 kg
3) How many 10 L helium balloons would it take to lift a man in an armchair (75 kg) if the density of air is $1.2 \mathrm{~g} / \mathrm{L}$ and the density of helium is $0.1786 \mathrm{~g} / \mathrm{L}$. Assume each balloon has a mass of 3 g . (Hint: First calculate how much extra mass a helium balloon can carry)

Just like the example in the lesson, one balloon can lift 10.2 g . If each balloon has a mass of 3 g , then each balloon can carry 7.2 g .
$75 \mathrm{~kg} / 7.2 \mathrm{~g}=\mathbf{1 0 , 4 1 7}$ Balloons.

