\qquad

1. Record your measurements in the table below:

Mass name of swinger? (child or adult)	Chain Length regular or shortened?	Rate how many swings in 60 seconds?

2. Graph your results by coloring the number of boxes up to the pendulum rate (number of swings in 60 seconds) in the table below:

75			
70			
65			
60			
55			
50			
45			
40			
35			
30			
25			
20			
15			
10			
	Swinger 1	Swinger 2	Swinger 3

3. Were all the rates the same? What affected the rate of the pendulum swing?
4. How many swings did Swinger 1 have in one minute (60 seconds)? How many would they have in one hour at the same rate? (Reminder: 60 minutes $=1$ hour)
5. Brainstorm ideas for your new invention, the Amazing Human-Powered Swing Clock, below:
6. Draw your design for the Amazing Human-Powered Swing Clock below:
7. For what timekeeping purpose(s) could your the Amazing Human-Powered Swing Clock be used?
