GPS Worksheet - Answer Key

Where Are They? - Note: Distances may be off by $+/-0.5 \mathrm{~cm}$ to make the triangulation slightly more challenging.

Name	Distance to Satellite 1 (cm)	Distance to Satellite 2 (cm)	Distance to Satellite 3 (cm)	Distance to Satellite 4 (cm)	Which State?
YOU!	12	18	9	15	Colorado

George	5	20	13	22	Washington
Patricia	23	15	16	3	Florida
Shawn	12	14	13	15	South Dakota

Isaac	17	9	17	11	Michigan
Sarah	21	7	20	11	New York
Carla	14	15	11	12	Kansas

Oscar	17	12	14	10	Illinois
Olivia	19	11	15	8	Kentucky
Lin	9	23	9	21	California

Add more states (or other specific locations on the map) to the list:

	17	18	8	11	Texas
	17.8	18.1	8.4	9.7	Austin

You can have students find any point on the map - just print out a map, measure, and record the distances ahead of time.

BONUS CONVERSION: The actual accuracy of typical commercial GPS receivers (with 4 satellites locked) is roughly 5 meters. On the scale of this map, that accuracy would correspond to 0.000025 cm .
$\sim 2.5 \mathrm{~cm}=500,000 \mathrm{~m}$ and $\mathrm{X} \mathrm{cm}=5 \mathrm{~m} . X=2.5 * 5 / 500,000$ or $2.5 / 100,000=0.000025 \sim$
To visualize this, look at a 1-millimeter division on your ruler and imagine that it is divided into 4000 more divisions.

