
Heat Transfer: Hot Potato, Cold Foil Activity To Heat or Not to Heat? Worksheet

Accuracy

Now that you have finished testing the heat capacities of your three objects, it is time to compare them to the accepted scientific values. For this, you need to use the equation below for each of the three experiments. The specific heat capacity of copper at 25° Celsius is 22.44 J/(mol K) and aluminum is 24.20 J/(mol K).

$$\% Error = \frac{\left| C_{P true} - C_{P exp} \right|}{C_{P true}}$$

Where:

 $C_{p true}$ = the accepted heat capacity for the substance and

 $C_{p \ exp}$ = the heat capacity you calculated for the substance.

Calculation	

Improvement

One of the most important aspects of engineering is to redesign and improve your project, whether it be a chemical process, an airplane wing, or an engine.

1. What do you think caused the error in you measurements?

•	•		
-			

2.	How much error would you predict finding in testing the Cp of another object in the calorimeter?

Na	me: Date:
	e heat capacities you used as "true values" are tabulated for 25°, whereas you actually tested samples at a much lower temperature.
3.	How do you think this affects the error in your calculation?
lf y	you were the lead engineer
If y	you were the lead engineer and you were able to do this experiment again:
4.	How would you do it differently?
5.	How would you design the procedure?
6.	How could you improve the process or do it differently?
Ot	her Details
1.	What other factors could change the outcome of your experiment?
2.	Could the specific heat also be temperature dependent?