Name:	Date:	

Witnessing Evaporation Worksheet

1. Enter the weights (and units) of each pan in the chart below.

Pan	Day 1	Day 2	Day 3	Day 4	Day 5
A (soil & plants)					
B (soil)					
C (water only)					

2.	Gran	h v	vour	resul	ts
	OLUP		, our	LODGE	

Make a line graph of the pan data you collected.

- Use a separate piece of graph paper.
- Write the **days of the experiment** (Days 1-5) on the X-axis.
- Write the **weight** (include the units) on the Y-axis.
- Graph all three pans on the same graph by using a **different color** for each line.
- Remember to include a graph **legend or key**.
- 3. Which pan(s) lost the most water? Why?
- 4. What would happen in Thirsty County if precipitation occurred a lot more than evaporation or transpiration?
- 5. What do the county's farmers call a long dry period during which not enough precipitation occurs to match the evaporation and transpiration?
- 6. What can Thirsty County farmers do to save their crops?
- 7. Which reservoir will lose more water to evaporation: a reservoir in Arizona or a reservoir in New York? Why?
- 8. Why does Splash Engineering consider evaporation important in the operation of dams?

Dams: Lesson 7, Witnessing Evaporation Activity — Worksheet