Name: Date:

Meeting Energy Needs — Optimization Worksheet

Instructions

Please fill in the chart below with what you think is the best *source* of energy for each energy *need*. Different needs can be met with different sources, so think carefully about the best option for each need. For each type of need, you may use the same source or a combination of different sources — the decision is up to you.

Need: Cooking Options: coal, biomass, LPG, biodigester, solar power Choice: Emissions: Cost:	Need: Cooking Options: coal, biomass, LPG, biodigester, solar power Choice: Emissions: Cost:
Need: Cooking Options: coal, biomass, LPG, biodigester, solar power Choice: Emissions: Cost:	Need: Heating Options: coal, biomass, LPG, geothermal Choice: Emissions: Cost:
Need: Heating Options: coal, biomass, LPG, geothermal Choice: Emissions: Cost:	Need: Heating Options: coal, biomass, LPG, geothermal Choice: Emissions: Cost:
Need: Lights and other electricity Options: coal, hydropower, solar power, wind, biodigester Choice: Emissions: Cost:	Need: Lights and other electricity Options: coal, hydropower, solar power, wind, biodigester Choice: Emissions: Cost:
Need: Hot water Options: coal, biomass, LPG, solar hot water, biodigester Choice: Emissions: Cost:	Need: Hot water Options: coal, biomass, LPG, solar hot water, biodigester Choice: Emissions: Cost:

Energy Source	Cost (\$)	Emissions
coal	100	500
biomass	0	300
LPG	200	200
biodigester	100	50
geothermal	500	0
hydropower	50	100
solar power	400	0
wind	100	0
solar hot water	50	0

_		
/ N	~~4:	-
Ou	6211	OHS

- 1. Look at the 10 blocks on the first page, each with an energy need. How many of these blocks are for cooking needs? blocks.
- 2. What *percentage* of this family's energy needs are for cooking? _____ %
- 3. How many blocks are for lighting? ____ blocks.
- 4. What percentage of this family's energy needs are for lighting? _____ %
- 5. Write your total cost and emissions for each category below:

	COST	EMISSIONS
COOKING		
HEATING		
LIGHTS & ELECTRICTY		
HOT WATER		

- 6. What is your TOTAL cost altogether? _____ dollars
- 7. What is your TOTAL emissions level altogether? _____
- 8. If you chose every energy source to have ZERO emissions, what would your total cost be?
 ______ dollars
- 9. Write down your definition of optimization.

10. Write down the problem that engineers are trying to optimize to help people in rural China and other developing areas: