\qquad
\qquad

Foundations Math Worksheet

1. Compare the actual bearing pressure that the shallow foundation produces and the allowable bearing pressure of the soil. Does the foundation fail? Why is $\sigma z D$ equal to 0 ? Show all your work and calculations.

Actual bearing pressure is $q=$ force / area
The force, P , on the foundation is $100,000 \mathrm{lbs}$
The area of the bottom of the foundation is square with 10 -foot sides
Allowable bearing pressure of the soil is $q_{u l t}=6.28 \times \mathrm{s}_{\mathrm{u}}+\sigma_{\mathrm{zD}}$
From soil investigations, $\mathrm{s}_{\mathrm{u}}=500 \mathrm{lbs} / \mathrm{ft}^{2}$ and σ_{zD} is 0 .

2. Compare the actual bearing pressure that the shallow foundation produces and the allowable bearing pressure of the soil. Does the foundation fail? Show all your work and calculations.

Actual bearing pressure is $\mathrm{q}=$ force / area
The force, P , on the foundation is $200,000 \mathrm{lbs}$
The area of the bottom of the foundation is square with 7-foot sides
Allowable bearing pressure of the soil is $q_{u l t}=6.28 \mathrm{x} \mathrm{su}_{u}+\sigma_{\mathrm{zD}}$
From soil investigations, $\mathrm{su}_{\mathrm{u}}=500 \mathrm{lbs} / \mathrm{ft}^{2}$ and σ_{zD} is $110 \mathrm{lbs} / \mathrm{ft}^{2}$

3. Compare the actual load given for the deep foundation and the allowable ultimate load calculated. Does the foundation fail? Show all your work and calculations.

The actual load, P , on the foundation is $100,000 \mathrm{lbs}$
The allowable load $P_{a}=q_{t}{ }^{\prime} \times A_{t}+f_{s} \times A_{s}$.
The area of the bottom of the foundation is circular with a 1-foot radius
Area of a circle $=\pi *$ radius * radius
The area of the side of the foundation is the surface area of the foundation in contact with the soil. The area is the foundation circumference of the multiplied by the foundation length.
Circumference $=2 \times \pi \times$ radius
$\pi=3.14$
Length of the foundation $=40$ feet
From soil investigations, $\mathrm{qt}^{\prime}=3000 \mathrm{lbs} / \mathrm{ft}^{2}$ and $\mathrm{f}_{\mathrm{s}}=600 \mathrm{lbs} / \mathrm{ft}^{2}$

